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Abstract·--This article is concerned with the electro-clastic interaction between a dislocation and
an elliptical piezoelectric inhomogeneity in an infinite piezoelectric matrix. The matrix is subjected
to remote antiplane shear and inplane electric fields. The explicit expressions of the complex
potentials are derived in both the inhomogeneity and the surrounding matnx using conformal
mapping and the perturbation techniques. The results reveal that when the inhomogeneity reduces
to a cavity. the electric field strength in both the cavity and the matrix is not affected by the
dislocation. In addition, the results also show that the electric field strength is uniform in the cavity.
In the case of a slit crack. the electric field strength in the matrix becomes uniform along the slit
and in the matrix, while the stress and the electric displacements show the traditional square root
singularity at the crack tip. Ii) 199X Elsevier Science Ltd.

I. INTRODUCTION

Due to their intrinsic electro-mechanical coupling behaviour, piezoelectric materials are
widely used as sensors and actuators in the technologies of smart materials. Significant
progress has recently been made in the development of these materials as a result of the
extensive research efforts of the scientific and industrial communities.

It is well known that defects, such as dislocations, cracks, cavities and inclusions, can
greatly influence the performance of piezoelectric devices. A thorough understanding of
the coupled electro-mechanical behaviour of these devices requires accurate knowledge of
both the electric and the mechanical fields produced by these defects.

A great deal of work had been conducted on the interaction between the electric and
elastic fields induced by different defects in a piezoelectric material [see Parton (1976);
Deeg (1980); McMeeking (1987); Sosa and Pak (1990); Kuo and Barnett (1991); Pak
(1990a, b; 1992); Wang (1992); Chen (1993); among others]. Some important solutions
have been derived e.g. Deeg (1980) examined the effect of a dislocation, a crack and an
inclusion upon the coupled response of piezoelectric solids, while Pak (1990a) obtained
closed-form solutions for a screw dislocation in a piezoelectric solid. Zhang and Tong
(1996) formulated the mechanical and electric fields around an elliptic cylindrical cavity in
a piezoelectric material under remote antiplane shear and inplane electric fields. With the
extended eight-dimensional formalism developed by Lathe and Barnett (1976), Kuo and
Barnett (1991) and Suo et al. (1992) studied the singularities of interfacial cracks in bonded
anisotropic piezoelectric media. More recently, Chung and Ting (1996) considered an
elliptical inclusion embedded in a piezoelectric matrix. An extensive review concerning the
advances in piezoelectric solids with defects can be found in a recent paper by Sosa and
Khutoryansky (1996).

In this paper, we complement the earlier works by examining the electro-elastic
interaction effects between a screw dislocation and an elliptical piezoelectric inhomogeneity
in an infinite piezoelectric matrix. The matrix is subjected to remote antiplane shear and
inplane electric field. The analysis is based upon the use of conformal mapping and the
perturbation method. Following this brief introduction, we state the problem and outline
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Fig. I. A schematic of the electro-elastic interaction between a screw dislocation and an elliptical
inhomogeneity in a piezoelectric material.

the basic field equations and continuity conditions. In Section 3, the general series solutions
for the potentials, both inside and outside the inhomogeneity, are derived explicitly. In
Section 4, closed-form solutions are obtained for a screw dislocation with a circular pie­
zoelectric inhomogeneity. In Section 5, two special interaction problems are examined: (i)
the elastic interaction between a dislocation and an elliptical inclusion, and (ii) the electro­
elastic interaction between a dislocation and an elliptical cavity. The field solutions are
given in closed forms. For the former problem, our solution is shown to be identical to that
obtained previously by Sendeckyj (1970). For the latter one, it is found that the electric
field strength, both inside and outside the cavity, is not influenced by the dislocation and is
uniform when the cavity reduces to a slit crack. Finally, the paper is concluded in Section
6.

2. BASIC EQUATIONS

In a linear piezoelectric medium, the governing field equations and constitutive
relations at constant temperature can be expressed as

(Jij,; = 0, D u = 0 (I)

(2)

where (Ji;' U i, D; and E i are stress, displacement, electric displacement and electric fields,
respectively. Cijk" ek;/ and Gij are the corresponding elastic, piezoelectric and dielectric
constants, which satisfy the following symmetry relations:

Let us consider an unbounded piezoelectric medium which contains an isolated singu­
larity and an elliptical piezoelectric inhomogeneity, subject to the uniform remote mech­
anical and electric loads shown in Fig. I. Both the inhomogeneity and the matrix are
assumed to be transversely isotropic, while the singularity and the inhomogeneity are
infinitely extended in a direction perpendicular to xy-plane. The inhomogeneity is assumed
to be perfectly bonded with the matrix and there are no concentrated forces and free charges
lying at the interface. The singularity may be a line dislocation, a line force or a line charge.
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In our study, the singularity will be considered as a screw dislocation located at point
(xo,Yo) in the matrix with the Burgers vector given as hz . The regions occupied by the matrix
and the inhomogeneity are referred to as QI and Q2' respectively.

For the present problem, the anti-plane displacement w is coupled with the in-plane
electric field E, and Ey- They are independent of the longitudinal coordinate z, such that
W = w(x,y), Ex = E,(x,y) and Ey = E,(x,y). Then, the governing field equations (I) and
the constitutive relations (2) reduce to

ow
(J:x = C44 -;;- -e I5 E"

ox

UW
D,. = CI5 -;;- +tll E"

ox

aD, aD,--+_. =0
ax ay (3)

(4)

Substituting eqn (4) into eqn (3) and noting that Ei = - ¢.! where ¢(x, y) is the electric
potential, we have

C44V2W+CI5V2¢ = 0

CI5V2W-tIIV2¢=0 (5)

where V2 is the two-dimensional Laplacian operator. It is easy to show that eqn (5) can be
satisfied automatically, if wand ¢ are chosen as the real parts of the analytical functions
'¥(z) and <I>(z), such that:

I
w = - ['¥(z) + '¥(z)]

2C44

I -
¢ = -2 [<I>(z) + <I>(z)]

til
(6)

where z = x + iy is the complex variable and the overbar refers to the complex conjugate.
Hence, the electric field strength, the electric displacements and the stresses can be expressed
as

1
E,-iE,. = - -<I>'(z),

. til
D, - iD, = ~ '¥'(z) -<I>'(z),

. C
44

(7)

where prime denotes the derivatives with respect to the arguments. Using eqn (7), the
resultant force T and the resultant normal component S of the electric displacement along
any arc AB can be calculated as

1
8 '

I -- CI5--
T = ((J:x dY-(Jzy dx) = ~2 (['¥(z) -'¥(z)]~+ -- [<I>(z)-<I>(z)]~}

A til

IB '{ }
I CI5 -- --

S = A (D,dy-D,dx) =:2 C44 ['¥(z)-'¥(z)]~-[<I>(z)-<I>(z)]~ (8)
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where []~ represents the change in the bracketed function going from point A to point B
along the arc.

Let us now introduce the following mapping function

with

(9)

R = (C! + b)1 /2 = (1-±-~)1/2,
a-b l-c:

b
t; =-­

a
(10)

where 2a and 2b are the major and minor diameters of the elliptical inhomogeneity. This
mapping function transforms region 0 1 of the z-plane into the exterior region of the unit
circle r l (p = I) in the transformed (-plane. It also transforms region O2 into the annular
region between the unit circle r I and a circle r 2 of radius p = 1/R representing a cut from
-c to +c in the z-plane, see Fig. 2. With the mapping function (9), eqns (6) and (8) can
be rewritten in the (-plane as

and

I ---
w = -2- [\P(() +\fI(O]

C44

I -
¢ = -2. [$(() +$(0]

1: 11

T = -2
i

{[\P(O - \P(()]~ +~ [$(() -$(O]~}
°11

S = ~ {:.:: [\fI(O - \fI(()]~ - [$({j -$(Ol~}

(I I)

(12)

where \P(() and $(0 imply \fI[O(O] and $[Q(()], respectively. By applying the perturbation
techniques adopted by Stagni (1982) for isotropic elasticity and by Hwu and Yen (1993)
for anisotropic elasticity, the general field potentials (11) for the inhomogeneity problem
can now be written as



and
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(13)

(14)

where the subscripts (or superscripts) I and 2 denote the matrix OJ and the inhomogeneity
02, respectively. The functions IJl0 and <1>0, which represent the field potentials associated
with the unperturbed mechanical and electric fields, are holomorphic in the entire domain
except at the singular points. The functions IJl I and <1>1 (or 1Jl2and <1>2) are the field potentials
related to the perturbed field in the matrix (or inhomogeneity) and are holomorphic in
region 0 1 (or O2),

The assumption of perfect bonding and that of no free charges and forces along the
interface between regions OJ and O2 imply the continuity ofdisplacement, electric potential,
traction and normal components of the electric displacement across the elliptical interface.
These conditions can be expressed as

Substituting eqns (13) and (14) into eqn (15) yields

Ilj [1Jl0(a) + IJl0(a) + IJl j(a) + IJl I(a)] = 1Jl 2(a) + 1Jl2(a) (16a)

1l2[<I>O(a) + <1>0 (a) +<1>] (a)+<I>j(a)] = <1>2 (a) +<1>2 (a) (16b)

flJl0(a) -1Jl0(a) + IJl I(a) -lJl j (a)] + ct j [<1>0 (a) - <1>0 (a) + <1>] (a) - <1>] (a)]

= [1Jl 2(a)-1Jl 2(a)]+ct2[<I>2-(a)-<I>2(O')] (16c)

13, [1Jl0(a) -1Jlo(a) + IJl I(a) -lJl j(a)] - [<1>0 (a) - <1>0 (a) +<I>j (a) -<I>j (a)]

= 132 [1Jl 2(a) -1Jl2(a)] - [<1>2 (a) -<1>2 (a)] (16d)

where

(17)

In addition, the following conditions must be satisfied on r 2

(18)

since the points a/Rand 0-/R correspond to the same points of the cut from - c to +c in the
z-plane. Noting that the remote mechanical and electric loads are uniform, the unperturbed
solution potentials lJlo and <1>0 with a screw dislocation located at point Zo = 0((0) can be
easily given as
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cLb,
=-2.-In[O(O-O((o)l+poO(O

1rI

(19)

where the Burgers vector bz is a real number, Po and qo are complex constants which can be
determined from the mechanical and electric loading conditions at infinity and can thus be
taken as the remote equivalent mechanical and electric fields, respectively. There are four
possible combinations of remote mechanical and electric loadings (Pak, 1990b):

Case 1: remote mechanical strains y~, y~ and remote electric field strength Ec; and
EC: ;

Case 2: remote mechanical stresses (J~, (J~ and remote electric displacements D~' and
DC; ;

Case 3: remote mechanical strains }'~, y~ and remote electric displacements D';' and
DC; ;

Case 4: remote mechanical stresses (J':;, (J~ and remote electric field strength E':' and
EC:.

Each case corresponds to a pair of Po and qo, which are provided in Appendix I. With the
aid of the mapping function (9) and the following relation

:c (k+ I

In(1-0 = - L - 1(1 < 1
k~l k+ 1

(20)

eqn (19) can be represented in a general form of Laurent series expansions around the
inhomogeneity as

(21 )

where the constant terms denoting the equipotential field and the translation of a rigid
body have been omitted. The coefficients a2, hZ, c2 and d2 are given by the following:

(22a)

(22b)

j
qOC
-R

c2 = 0
2

k=O

k = 1,2, ... ,

(22c)
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(22d)

Our task now is to determine the complex potentials 'Pj and <1>i (j = 1,2) for regions
0 1 and Oz which satisfy the continuity conditions (16) and (18).

3. GENERAL SOLUTIONS

Since in the (-plane, 'P I (0 and <1>[ (0 are holomorphic in the exterior of the unit circle
r l and 'Pz(O and <1>zCO are holomorphic in the annular region between the unit circle r ,
and the circle r z of radius p = I/R (Fig. 2), they can be expressed by Laurent's expansions,
as follows:

ex ex
\TI (f) "b1f-(k+l) ffiJ(f) = "dklr-(k+l)
T 1 ~ = L. k~ , 'l' ~ L. ~

k~O k~O

'Pz(O = kLoo:o [al(k+l +bl(_(k+ll])

(EOz·

<1>z(O = L [cl(k+1 +dl(-(k+[l]
k~O

Substitution of eqn (24) into eqn (18) yields

Thus, eqn (24) can be rewritten as

(23)

(24)

(25)

(26)

Using Laurent series expansions (21) and (26) and noting that on the unit circle r 1 of Fig.
2, ( = a = 1/0', the displacement continuity condition (l6a) leads to

-CD

I: {IlJ(aZ+bZ)-[al+alR- Z(k+ll]}ak+ J +1l 1'P 1 (1/lf)
k~O

':.()

I: {- 111 (aZ +b2) + [al +alR -Z(k+ I)]}a-(k+ I) - 111 'P J (a). (27)
k=O

It is well known from the analytical function theory that if 'P(0 is holomorphic in the
exterior region 0 1 of a unit circle r J (p = 1), then 'P(I/'> is holomorphic in the interior
region of the unit circle. Thus, if we let 0 0 represent the region inside the circle r Z of radius
p = l/R such that Oo+Oz occupies the whole region inside the unit circle, it follows from
the above argument and egn (27) that the function e(o defined by
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8(0 = l'~' {", (a2 +bn -. [al +alw '''+ "J}('" +", '1', (1/0 (EO, +0, (28)

L {-fll(aZ+b2)+[a}+a}R- 2(k+l)j}(-(k+1)-fl l'P l CO (EOI
k~O

will be holomorphic and single-valued in the entire plane. Hence, it is concluded, by
Liouville's theorem, that 8CO == constant. Since constant function 'PI CO denotes rigid-body
motion, which can be neglected, thus 8(0 == O. With this result, we have from egns (28)
and (23) that

(29)

Similarly, the remaining continuity conditions in egn (16) produce

The main task now is to determine the coefficients of the series expansion of the
complex potentials. For a given k, egns (29)-(32) provide a system of four linear eguations
with four unknowns a}, hI, d and dI. These unknown coefficients can be solved and
expressed in terms of the specified coefficients aZ, hZ, cZ and dZ as

(33)

(34)

(35)

(36)

where the coefficients I~l), J~l), L~l) and N~l) (n = 1,2,3,4) have been given in Appendix 2.
Substituting egn (22) into egns (33)-(36), all the coefficients in the series expansions

(23) and (24) for 'PICO, cD,(O, 'P2(0 and cD2CO are determined and the problem is thus
solved. In some cases, the series solutions (23) and (24) can be given in simpler forms or
summed up to obtain closed-form expressions. For example, in the absence of the dislo­
cation, all the coefficients a}, hI, d and dI vanish when k ~ I. These solutions can then be
given in closed forms in the physical z-plane as:

'PO(z) +'P 1 (z) = PoZ+H(!b21 R 2-l)po +Jb2)R 2po

+LS2
)R 2 qo +NS2

) R 2qoHz-(Z2 _C2 )1/2] ZEO] (37a)

(38a)

(38b)
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Substitution of the above solutions into eqn (7) produces the field components. It is easily
found that since 'P2(Z) and <D2(z) are linear functions of z, the stress, the electric field
strength and the electric displacement inside the elliptical inhomogeneity are uniform. The
solutions (37) and (38) are in agreement with those derived by Zhong and Meguid (1997).
In the next two sections, the interaction between a screw dislocation and a circular or an
elliptical inhomogeneity will be examined and discussed.

4. INTERACTION BETWEEN SCREW DISLOCATION AND CIRCULAR INHOMOGENEITY

In the case of a circular inhomogeneity (a = b), the mapping function (9) becomes
Z = 0(0 = a(. Using relations (20) and (33)-(36), the field potentials 'PI, <D" 'P2and <D2in
eqns (23) and (24) can be obtained in closed forms and the solutions in 0] and O2 are given
by

(39a)

(39b)

(40a)

(40b)

where

2d4 [d4(eL +eL)+e:s(els+eTs)]

d4 A

A
6

= 2eL [eL (C~4 +cL) +els(e:s +eTs)]

e: 1 A
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The electric field strength, electric displacements and stresses, both in the matrix and
the inhomogeneity, can be derived from eqns (7), (39) and (40) as follows:

1 [ ( I)( 1)"1 ( I)c 44 hz 1 A el5 I el5
=-- --- L.l +-A -- + P +-q

. ~ 3 I 7 2- 0 I 0
2m ~-Zo ell z-a /zo z" ell

in the matrix, and

in the homogeneity.
The electro-elastic coupling effects induced by the dislocation can be evaluated by

letting Po = qo = 0 in the above representations. It is easily seen that the electric field
strength, both inside the inhomogeneity and the matrix, is influenced by the dislocation
and will not vanish unless A5= A7 = 0, i.e. that e: 5/d4 = ei 5/d4' The electric displacements,
like the stresses, show classical screw dislocation behaviour with I /(z - zo) singularity at the
point z = zoo It will not vanish unless ei 5 = d 5 = 0, which is the case when both the matrix
and the inhomogeneity are elastic dielectric materials. It can also be found that in the
absence of the dislocation, both the stress and the electric field strength are uniform in the
inhomogeneity. This result was established by Pak (1992). In the absence of the electric
fields, our solutions coincide with those of Smith (1968) and Gong and Meguid (1994).

If the inhomogeneity is replaced by a circular cavity, then d4 = d 5 = 0 and e~ I = co.
In this case, expressions (39) and (40) reduce to
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Apparently, the electric field strength, both in the cavity and the matrix, is not influenced
by the dislocation and the remote equivalent mechanical field Po. In addition, the electric
field strength and the electric displacement are uniform inside the cavity.

5. INTERACTION BETWEEN SCREW DISLOCATION AND ELLIPTICAL
INHOMOGENEITY

5.1. Field solutions for elastic problems
For the elliptical inhomogeneity, no closed-form field potentials exist. In the absence

of the electric fields, however, the problem becomes a purely elastic one, and the expressions
(33)-(36) for the coefficients, al, bl, d and dl can be given by the following simple forms

(41)

It follows from eqns (21)-(23), (26) and (41) that

'1'2(0 = - c;:~z k~O {(k~ I) [Iil)(R(o)-(k+ I) -Jil\R(o)-(k+I)]

X [(RO(k+ I) + (RO (k+ I)] } + (ILl )Po + Jbl )po)z (E O2 (43)

where

IiI) = 21l1(l +Il,)
(I+IlI)2_(l-IlI)2R- 4(k+I)'

-2/1 (1-/1 )R-2(k+l)
J (I) _ .-1 .-1

k -
(l + IlI)2 - (1- IlI)2 R -4(k+ I)

If the dislocation is located at a point 70 = 00((0) along the x-axis and the remote strain
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y~ or stress (j':; vanishes, such that (0 = (0 and Po = Po, the field solutions (42) and (43)
become

(44)

The same problem has been considered, in the absence ofPo, by Sendeckyj (1970). In terms
of our notation, his result can be expressed as

where K = (IJI-l)/(1J1 + 1) and nm is the mapping function defined in eqn (9). In the
absence of Po, our results (44) and (45) are identical to eqns (46) and (47), except for a
constant term representing the rigid-body displacement. The equivalence between eqns (44)
and (46) or (45) and (47) can be easily established by expanding eqns (46) or (47) into a
double series form and noting that one of the series can be summed up to give closed-form
expressions.

5.2. Interaction between screw dislocation and elliptical cavity
If the inhomogeneity is an elliptical cavity, we have d4 = 0, eT 5 = 0, and 8T I = 8 o. In

this case, the field solutions become

where
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NS2) = 2/12txt[(I +txJ!3 1 -/12)+ (I +txlPI +/12)R 4 ]/b

Lb3
) = 2/12(1 +txIPI)(I +tx,PI + /12)R 4 /b

Nb3
) = -2/12(1 +txlPd(l +txlPI - /12)R 2/fJ

LS4
) = 4/12(1 +tx I P,)R 2 /b

NS4
) = {2(1 +txIPI)[(I +txlPI +/12)R 4 -(I +txlPI -/12)]/b}-I

with

It follows from eqns (7), (48) and (49) that

. d4b= (1 1 1) 2R(2 ( e: 5 )

O"zxl-!O"zyl = 2ni (-(0 +Z- (-l/ra- c(R2(2_-i)+ Po+~qo

- {[ -Po +R 2po +LS2)R 2qo +NS2 )R 2qo]

in the matrix, and

1479

in the cavity.
It is clear that the electric displacements exhibit I/r (r = (-(0) singularity at the point

( = (0 in the matrix and are uniform in the cavity. In addition, the electric field strength,
both inside and outside the cavity, are not affected by the dislocation and the remote
equivalent mechanical field Po, and are uniform inside the cavity.

If we let the ratio of the major and minor diameters of the elliptical cavity approaches
zero such that the cavity can be taken as a slit crack, it follows from eqn (10) that c; = b/a---->
0, R -> 1, and c -> a. In this case, expressions (48) and (49) reduce to
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(50a)

(50b)

(51)

It is interesting to note from the above equations that the electric field strength, either in
the matrix or along the crack faces, is uniform and can be expressed as

E,-iE, in the matrix

along the crack faces.

The stresses and electric displacements, however, show traditional square root singularities
near the ends of the slit crack. This phenomenon was also observed by Pak and Tobin
(1993) in the absence of the dislocation. The above results are very important in determining
the electric boundary conditions of a cavity or a crack problem in piezoelectric media.

6. CONCLUSIONS

The electro-elastic interaction between a screw dislocation and an elliptical piezoelectric
inhomogeneity in an infinite piezoelectric material is investigated. By using conformal
mapping and the perturbation technique, the general series solutions for the field potentials
in both the inhomogeneity and the surrounding matrix are obtained explicitly. In the case
of a circular inclusion or an elliptical cavity, closed-form field potentials are derived. It is
found that when the inhomogeneity reduces to a cavity, the electric field strength, both
inside and outside the cavity, attains a uniform distribution in the cavity and is not affected
by the presence of a dislocation in the matrix. If the elliptical cavity further reduces to a
slit crack, both the stress and the electric displacement exhibit traditional square root
singularities, while the electric field strength becomes uniform in the matrix and along the
crack faces.
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APPENDIX I

Expressionsfor complex constants Po and qo corresponding to different combinations ofremote electric and mechanical
loads

The complex constants Po and qo in eqn (19) can be determined from the following four cases of the boundary
conditions given at infinity:

(Case I) remote mechanical strains ,e;;. Y;, and remote electric field strength E-;- and E~' will yield

(AI)

(Case 2) remote mechanical stresses (J;" (J;, and remote electric displacements D;C and D~ will yield

(A2)

(Case 3) remote mechanical strain I;;. y;; and remote electric displacements D~ and D;~ will yield

(A3)

(Case 4) remote mechanical stresses (J,'•• (J7, and remote electric field strength EC: and E~ will yield

(M)

APPENDIX 2

Details ofcoefficients in eqns (33)-(36)
The coefficients in eqns (33)-(36) are given as follows:

L\" = R"'-I) (~2_k + A,.,).
0", D,., (AS)
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~~)
6 '7..k

Nf' = R"'+ I, (A 6
k _ ~~).

Ou Oz.,
(A6)

I-R'''' II 11k
-----1

1'1 0",

(A7)

Where

'(4\ I+R'ik\ II ;'6.k I_R2ik'll "-1II
k

= ~__ x.k_ l
P2 6u 1'2 6,.k .

(A8)

with

(A9)

(AIO)

(All)

(AI2)

(AU)

(AI4)

(A15)

(AI6)

0u = -[(t+I)R'(k+"+(~--I)J[C, +1)R2(krl)+(±-l)]

- [(~: +11,) R2"." + (:, -P2)J[(:: H,) R'lk -"+ (; -~,)J (AI7)

02.k = -[CI +1)R2(k+I I _(t- I)J[(±+I)R"')"-C, -I)J
- [(:, +Pl) R'(ke I) - (:, - p,)J[(:: H, )R'lk+" - (;, -~2)J (AI8)

and 1'10 P" ~,' ~" P, and p, given in eqn (17).


