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Abstract—This article is concerned with the electro—clastic interaction between a dislocation and
an elliptical piezoelectric inhomogeneity in an infinite piezoelectric matrix. The matrix is subjected
to remote antiplane shear and inplane electric fields. The explicit expressions of the complex
potentials are derived in both the inhomogeneity and the surrounding matrix using conformal
mapping and the perturbation techniques. The results reveal that when the inhomogeneity reduces
to a cavity, the electric field strength in both the cavity and the matrix is not affected by the
dislocation. In addition, the results also show that the clectric field strength is uniform in the cavity.
In the case of a slit crack, the electric field strength in the matrix becomes uniform along the slit
and in the matrix, while the stress and the electric displacements show the traditional square root
singularity at the crack tip. ¢ 1998 Elsevier Science Lid.

I. INTRODUCTION

Due to their intrinsic electro-mechanical coupling behaviour, piezoelectric materials are
widely used as sensors and actuators in the technologies of smart materials. Significant
progress has recently been made in the development of these materials as a result of the
extensive research efforts of the scientific and industrial communities.

It is well known that defects, such as dislocations, cracks, cavities and inclusions. can
greatly influence the performance of piezoelectric devices. A thorough understanding of
the coupled electro-mechanical behaviour of these devices requires accurate knowledge of
both the electric and the mechanical fields produced by these defects.

A great deal of work had been conducted on the interaction between the electric and
elastic fields induced by different defects in a piezoelectric material [see Parton (1976) ;
Deeg (1980) ; McMeeking (1987); Sosa and Pak (1990); Kuo and Barnett (1991); Pak
(1990a, b; 1992); Wang (1992} ; Chen (1993); among others]. Some important solutions
have been derived e.g. Deeg (1980) examined the effect of a dislocation, a crack and an
inclusion upon the coupled response of piezoelectric solids, while Pak (1990a) obtained
closed-form solutions for a screw dislocation in a piezoelectric solid. Zhang and Tong
(1996) formulated the mechanical and electric fields around an elliptic cylindrical cavity in
a piezoelectric material under remote antiplane shear and inplane electric fields. With the
extended eight-dimensional formalism developed by Lothe and Barnett (1976), Kuo and
Barnett (1991) and Suo ef al. (1992) studied the singularities of interfacial cracks in bonded
anisotropic piezoelectric media. More recently, Chung and Ting (1996) considered an
elliptical inclusion embedded in a piezoelectric matrix. An extensive review concerning the
advances in piezoelectric solids with defects can be found in a recent paper by Sosa and
Khutoryansky (1996).

In this paper, we complement the earlier works by examining the electro-elastic
interaction effects between a screw dislocation and an elliptical piezoelectric inhomogeneity
in an infinite piezoelectric matrix. The matrix is subjected to remote antiplane shear and
inplane electric field. The analysis is based upon the use of conformal mapping and the
perturbation method. Following this brief introduction, we state the problem and outline
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Fig. 1. A schematic of the electro—lastic interaction between a screw dislocation and an elliptical
inhomogeneity in a piezoelectric material.

the basic field equations and continuity conditions. In Section 3, the general series solutions
for the potentials, both inside and outside the inhomogeneity, are derived explicitly. In
Section 4, closed-form solutions are obtained for a screw dislocation with a circular pie-
zoelectric inhomogeneity. In Section 5, two special interaction problems are examined : (i)
the elastic interaction between a dislocation und an elliptical inclusion, and (ii) the electro-
elastic interaction between a dislocation and an elliptical cavity. The field solutions are
given in closed forms. For the former problem, our solution is shown to be identical to that
obtained previously by Sendeckyj (1970). For the latter one, it is found that the electric
field strength, both inside and outside the cavity, is not influenced by the dislocation and is
uniform when the cavity reduces to a slit crack. Finally, the paper is concluded in Section
6.

2. BASIC EQUATIONS

In a linear piezoelectric medium, the governing field equations and constitutive
relations at constant temperature can be expressed as

0;,, =0, D;=0 n
O = Cijrthies— €, Dy = eyiy — &4 E, 2

where o,;, u, D; and E; are stress, displacement, electric displacement and electric fields,
respectively. ¢, ey, and e; are the corresponding elastic, piezoelectric and dielectric
constants, which satisfy the following symmetry relations :

Cijtt = Cjir = Cijie = Crpijs €xij = €pgis &5 = &

Let us consider an unbounded piezoelectric medium which contains an isolated singu-
larity and an elliptical piezoelectric inhomogeneity, subject to the uniform remote mech-
anical and electric loads shown in Fig. 1. Both the inhomogeneity and the matrix are
assumed to be transversely isotropic, while the singularity and the inhomogeneity are
infinitely extended in a direction perpendicular to xy-plane. The inhomogeneity is assumed
to be perfectly bonded with the matrix and there are no concentrated forces and free charges
lying at the interface. The singularity may be a line dislocation, a line force or a line charge.
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In our study, the singularity will be considered as a screw dislocation located at point
(xo, Vo) in the matrix with the Burgers vector given as b.. The regions occupied by the matrix
and the inhomogeneity are referred to as Q, and €,, respectively.

For the present problem, the anti-plane displacement w is coupled with the in-plane
electric field £, and E,. They are independent of the longitudinal coordinate z, such that
w = w(x,y), £, = Ex,y) and E, = E (x,y). Then, the governing field equations (1) and
the constitutive relations (2) reduce to

60 X ao’:V (’ D.Y + 6D_]' 0 (3)
dx oy  ox dy
ow ow
O:x = Cyq ox —esE., o C445; e sk,
; ‘ @
ow ow
D, =es—+eE, D ,=e¢; +&,E,

Substituting eqn (4) into eqn (3) and noting that E; = — ¢, where ¢(x, y) is the electric
potential, we have

C44V2H’+()]5V2¢ =0

e sViw—g V=0 (5)
where V? is the two-dimensional Laplacian operator. 1t is easy to show that eqn (5) can be

satisfied automatically, if w and ¢ are chosen as the real parts of the analytical functions
¥(z) and ®(z), such that:

1 —
= 5.~ [P+ ¥
Caq

w
1 —
=5 [P@+PE)] (6)

where z = x+iy is the complex variable and the overbar refers to the complex conjugate.
Hence, the electric field strength, the electric displacements and the stresses can be expressed
as

1
E—iE, = - —®(), D,~iD, = "2W(E)-(),
44

£

0 i, = (D) + SE () 7)
71 1

where prime denotes the derivatives with respect to the arguments. Using eqn (7), the
resultant force 7 and the resultant normal component S of the electric displacement along
any arc 4B can be calculated as

A

e

S = f (D dy—D,dx) =5 {C‘ [W—‘P(znﬁ—[ﬁz_)—@(z)]ﬁ} ®)
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where []4 represents the change in the bracketed function going from point A4 to point B
along the arc.
Let us now introduce the following mapping function

l L s
2= Q) = SIREHRD '] RO= - [+ (=)' )

with

(=& c=(@—b)" =a(l—e)'?
a+b\2 146\ b
R=<z:b> =<C¢) LT (19)

where 2a and 2b are the major and minor diameters of the elliptical inhomogeneity. This
mapping function transforms region Q, of the z-plane into the exterior region of the unit
circle T'; (p = 1) in the transformed {-plane. It also transforms region Q, into the annular
region between the unit circle I'; and a circle I'; of radius p = 1/R representing a cut from
— ¢ to +¢ in the z-plane, see Fig. 2. With the mapping function (9), eqns (6) and (8) can
be rewritten in the {-plane as

1 I
w=5 —[FO+¥)]
Cag
1 _
¢ = 2% [@(0)+D()] (1)

and

- {[W—‘P(C)]ﬁ + Q) —cb(:)]ﬁ}
S= é {‘; [FO-¥O1—[00) —®(C)]ﬁ} (12)

where W ({) and O({) imply W[Q({)] and ®[Q()], respectively. By applying the perturbation
techniques adopted by Stagni (1982) for isotropic elasticity and by Hwu and Yen (1993)
for anisotropic elasticity, the general field potentials (11) for the inhomogeneity problem
can now be written as
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W = O+ T+ 0 + )

o (e, (13)
¢, = 2—51*1“[@0(04'(%(()4‘(1)1(‘:)4'@1(C)]
and
1 o
w, = T[TZ(C)+‘I’Z(C)]
Cas {eQ, (14)

1 A_
d)z = ”2—2 [‘Dz (C) + @, (C)]

£Y)

where the subscripts (or superscripts) 1 and 2 denote the matrix Q, and the inhomogeneity
Q,, respectively. The functions ¥, and ®,, which represent the field potentials associated
with the unperturbed mechanical and electric fields, are holomorphic in the entire domain
except at the singular points. The functions ¥, and @, (or 'V, and ®,) are the field potentials
related to the perturbed field in the matrix (or inhomogeneity) and are holomorphic in
region Q, (or ;).

The assumption of perfect bonding and that of no free charges and forces along the
interface between regions Q, and Q, imply the continuity of displacement, electric potential,
traction and normal components of the electric displacement across the elliptical interface.
These conditions can be expressed as

w=w,, $y=¢,, T)=T,, §=8§, onl, (= a=e"). (15
Substituting eqns (13) and (14) into eqn (15) yields

1o (0) +¥o(0) +'¥,(0) + ¥, (0)] = ¥2(0) + P2 (0) (16a)
#2[®(0) + By (0) + @, (0) + P, (0)] = D3(0) + D, (a) (16b)

(¥ (0) =¥y (0) + ¥ (0) =¥, (0)] + 2, [y (6) ~ Dy (6) + D, (0) ~ @y (0)]
= [¥2(0) = ¥2(0)] +2,[D, (6) = D1 ()] (16¢)

Bi[¥(0) = ¥o(0) + ¥, (0) — ¥ (0)] = [® (0) — By (0) + @1 (0) — D, (0)]
= f2[¥1(0) = ¥2(0)] — [®2(0) — D> (0)]  (16d)

where
M= CiafChas M2 = €1 [E1, O = e\sfery, % = eisfer
By =eis/cis, P2 =eis/cis. (17)
In addition, the following conditions must be satisfied on I,
W1 (0/R) = ¥,(6/R), P:(c/R) = D,(5/R) (18)
since the points g/ R and &/ R correspond to the same points of the cut from —c¢ to +¢in the
z-plane. Noting that the remote mechanical and electric loads are uniform, the unperturbed

solution potentials W, and @, with a screw dislocation located at point z, = Q({;) can be
easily given as
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C;];4b

Yy(2) = ¥o({) = _2711'

: ln(Z— Z()) +p02

ciAbz
2ni

Oy (z) = Dy () = g0z = g 2L) (19)

In [Q(5) —Q(Lo)] + P QD)

where the Burgers vector b. is a real number, p, and g, are complex constants which can be
determined from the mechanical and electric loading conditions at infinity and can thus be
taken as the remote equivalent mechanical and electric fields, respectively. There are four
possible combinations of remote mechanical and electric loadings (Pak, 1990b) :

Case 1: remote mechanical strains yZ, y5 and remote electric field strength E¥ and
EY;

Case 2: remote mechanical stresses 03, o2 and remote electric displacements DY and
DY

Case 3: remote mechanical strains y7;, y3; and remote electric displacements D and
DY

Case 4: remote mechanical stresses ¢5, 6% and remote electric field strength E% and
E¥ '

yo

Each case corresponds to a pair of p, and g,, which are provided in Appendix 1. With the
aid of the mapping function (9) and the following relation

x© Ck+|

In(1-0) = = 3 g 1< 20)

eqn (19) can be represented in a general form of Laurent series expansions around the
inhomogeneity as

)

Wo(0) = Y [aft*t ! +bEL D)
k=0

L< L] < 1l 21

o0

Do () = Y [0+

k=0

where the constant terms denoting the equipotential field and the translation of a rigid
body have been omitted. The coefficients aj . by, c¢f and dj are given by the following :

1
ciab: 1 Doc _
o Co+ > R k=0
ay = (22a)
‘ 1 cish, 1
—_— = k=12, ...,
k+1 2mi pk+!
1
casb. 1 Do
— — k
2ni RPz, | 2R 0
b = (22b)
1 ebb./ 1 ! k=12
k+1 2rmi \R%¢, ST
qoC
—R k=0
ch =42 (22¢)

0 k=1,2,...,
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¢
. 9oc k=0
di = 2R (22d)
0 k=12,..

Our task now is to determine the complex potentials ‘¥, and @, (j = 1, 2) for regions
Q, and Q, which satisfy the continuity conditions (16) and (18).

3. GENERAL SOLUTIONS

Since in the {-plane, ¥,({) and ®,({) are holomorphic in the exterior of the unit circle
I'; and W,({) and ®,({) are holomorphic in the annular region between the unit circle T,
and the circle I'; of radius p = 1/R (Fig. 2), they can be expressed by Laurent’s expansions,
as follows:

Y0 = $ O 00 = T dir Y Len, (3)

o

Y20 = AZ (@@l + b

—

{eQ,. (24)
®20) = Y [0+ +di 4]
k=0
Substitution of eqn (24) into eqn (18) yields
al = R***Vpl, f = R*™ "V}, (25)

Thus, eqn (24) can be rewritten as

o

\P2(C) — Z [aick+l+a£R—2(k+1)‘:—(k+l)]
k=0

{eQ,. (26)
®,(0) = kz [2E+ ! @2 R+ Dk
=0

Using Laurent series expansions (21) and (26) and noting that on the unit circle I'; of Fig.
2, { = g = 1/a, the displacement continuity condition (16a) leads to

Y {ui(al +59) —[ai +a; R ** " }e* ! + 1, W, (1/6)
k=0

=kZ{—u.(52+b2)+[a£+aZfR*2‘““]}a~<k+'>—u.w1(o). 27)
=0

It is well known from the analytical function theory that if ¥({) is holomorphic in the
exterior region Q, of a unit circle I'; (p = 1), then ¥(1/{) is holomorphic in the interior
region of the unit circle. Thus, if we let Q, represent the region inside the circle [, of radius
¢ = 1/R such that Q;+Q, occupies the whole region inside the unit circle, it follows from
the above argument and eqn (27) that the function 6({) defined by
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Z {/11(a/?+52)_[af+5l§R_2(k+l)]}Ck+] +#1lP—1(1—/—5 {eQ, +Q,
k=0

o) = (28)
{_ﬂl(d/?+b2)+[(_l/3+a1%R"2(k+l)]}§7(k+])“ﬂll{'ll(o e,

ngk

k=0

will be holomorphic and single-valued in the entire plane. Hence, it is concluded, by
Liouville’s theorem, that 8({) = constant. Since constant function ¥, ({) denotes rigid-body
motion, which can be neglected, thus 6({) = 0. With this result, we have from eqns (28)
and (23) that

fibe = — (@ b0) +a; +ag R, (29)

Similarly, the remaining continuity conditions in eqn (16) produce

fadl = — (@ +d) + e+ R (30)
bitoydi = @ — b} +o, (& —dp) + (@i + o) RPEHD —(@ +,67) (31
Bibi—d; = (@ —b))— (& —d) + (Brai — )R ED —(Brai — 7). (32)

The main task now is to determine the coefficients of the series expansion of the
complex potentials. For a given k, eqns (29)-(32) provide a system of four linear equations
with four unknowns a?, b}, ¢} and d}. These unknown coefficients can be solved and
expressed in terms of the specified coefficients af, b7, ¢} and d} as

ai = IMa) +J"al + L") + NV e} (33)
by =1Pa) +JPa) + LP e} + NP e — by (34)
d=1Pa+Ja+ LY+ Né (35)
di = PG+ T @+ L+ NP —dy (36)

where the coefficients 7", J{*, LY and N{” (n = 1,2, 3,4) have been given in Appendix 2.

Substituting eqn (22) into eqns (33)—(36), all the coefficients in the series expansions
(23) and (24) for ¥ (), ©,(0), ¥,({) and ®,({) are determined and the problem is thus
solved. In some cases, the series solutions (23) and (24) can be given in simpler forms or
summed up to obtain closed-form expressions. For example, in the absence of the dislo-
cation, all the coefficients af, b}, ¢ and 4} vanish when k& > 1. These solutions can then be
given in closed forms in the physical z-plane as:
¥, (z)+¥, (z) = p02+% [(]{)Z)Rz - 1)P0 +J§12)Rzﬁo

+LPR G+ NP R Gollz— (2 —c?)'"?] zeQ, (37a)

Dy(z)+(z) = ‘ZOZ"’EI U5 R py+ 5 R*Po

FLR? = Dgo + N R*qollz— (7 ~¢*)'?]  zeQ,  (37b)

WY, (z) = [} 'po+ JE)I )ﬁo + Lg)”‘[o + Nirl)qo]z zel), (38a)

D.(2) = [IPpy +Ipo + L go + NP Golz z€Qs. (38b)
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Substitution of the above solutions into eqn (7) produces the field components. It is easily
found that since W,(z) and ®,(z) are linear functions of z, the stress, the electric field
strength and the electric displacement inside the elliptical inhomogeneity are uniform. The
solutions (37) and (38) are in agreement with those derived by Zhong and Meguid (1997).
In the next two sections, the interaction between a screw dislocation and a circular or an
elliptical inhomogeneity will be examined and discussed.

4. INTERACTION BETWEEN SCREW DISLOCATION AND CIRCULAR INHOMOGENEITY

In the case of a circular inhomogeneity (¢ = b), the mapping function (9) becomes
z = Q) = al. Using relations (20) and (33)—(36), the field potentials ¥,, ®,, ¥, and @, in
eqns (23) and (24) can be obtained in closed forms and the solutions in Q; and €, are given
by

Yo(2)+Y¥Y,(2) = [1 (z—zp)— A ln(l—-a—>}+poz+(po 1+q0A4); zeQ

(39a)

cilb, a’ a’
D (2)+P,(2) = ﬁ*A In (1_ ;>+CIOZ+(170A7 ‘f‘%As)“Z" zel (39b)
Zy

chsb.

¥, (z) = ;‘;”%Alln<1 f)+(p0A1+q0 Dz zeQ, (40a)
chib, z

2le) = . LAs - 08xs 08¢ 2

©:0) =5 A In 1= = )+ (A +g0Ag)z zeQ (40b)

where

@i [caa(ei +&11) +els(els +eis)]

A]: A

1
Caq

2 1.2 1,2
24 (€1587) —&11€75)

A2 =
£1) A

1
Ay = K[(C}M — el +He )+ els) —(els)?]

1 1 .2 12
2041 (e1s€1, —¢&11€7s)

A4= 1
t1 A
2 (a1 L2 1.2
A _2511(644615’"915C44)
s = RLLATL L it
Cia A
2 el gl 2 1,0 2
A _ 27 [en(caatcaq) Fers(ers +eis)]
¢ =—
&N A
1ol 2 1.2
A _2811(5'44915_315044)
;= AL S il

A

1
Caq

1 2 2
Ag = K[(C}m +cia) (e —et1) +(eis)* —(ef5)’]
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with

A =(C‘lt4+¢'i4)(£}1 +5%,)+(e{5 +e%s)2~

The electric field strength, electric displacements and stresses, both in the matrix and
the inhomogeneity, can be derived from eqns (7), (39) and (40) as follows:

2

1 [clib, i 1 a:
E,—IiE, = ——[ 2 A, ( - ;>+(P_0A7 +‘70As)'7—2 _‘]0} zefd,

22
Z—a [Zy

b [els 1 ! 1 1 el
D, '“iDyl = Cas . fs L ejA3 —A; Y + LPo —4o
2 el 2— 20 \chy z—a’lz, * cly

el e
_ [%(ﬁl)A_z +qoAs)— (PoAAs +670Ag)]*2 zeQ,

Caa

cish, 1 el i 1y el
Oy — 102 =%l} —<A3+_:*5A7> (ﬁf‘")]"‘(l’o*‘_g%)
mi | z—z, €11 z—a’lzy, %) €14

el a
- [(ﬁoAs +0hd)+ = (P +qug)}

e z?

[

in the matrix, and

chub. 1
*“[ ;A = A +(poAs +q0A6)} zel),
i z—2z,

. cisb. [eis 1 eis
D,—iD, = N A —As . + T(PoAl +q0Ay) — (PoAs+g0hg) 2€Q,
“ 4

27[1 CZ'4 —Zy Cy
ciab. e? 1 el

Oox2 =10 = = “ A+ TISAS +(poAi+goA2)+ 4215'(P0A5 +q0A¢) zeQ,
2mi e Z—2 &2

in the homogeneity.

The electro-elastic coupling effects induced by the dislocation can be evaluated by
letting p, = ¢o = 0 in the above representations. It is easily seen that the electric field
strength, both inside the inhomogeneity and the matrix, is influenced by the dislocation
and will not vanish unless A = A, = 0,1i.e. thatels/ci, = eis/c2,. Theelectric displacements,
like the stresses, show classical screw dislocation behaviour with 1/(z —z,) singularity at the
point z = z,. It will not vanish unless e}s; = ¢7s = 0, which is the case when both the matrix
and the inhomogeneity are elastic dielectric materials. It can also be found that in the
absence of the dislocation, both the stress and the electric field strength are uniform in the
inhomogeneity. This result was established by Pak (1992). In the absence of the electric
fields, our solutions coincide with those of Smith (1968) and Gong and Meguid (1994).

If the inhomogeneity is replaced by a circular cavity, then ¢3, = efs = 0 and &}, = ¢,.
In this case, expressions (39) and (40) reduce to
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o)+, () = E [“’(z—zO)_m (1 - af)]ﬂ’ .

2mi zZ,
2clelse a’
+{p0+q0 1 l : 44C 1560 1 - }¥
giilcaaler +eg)+(ey5)°]) 2

caalel) — &) +(eis)? ﬁz_

C}M(E:l +80)+(e}5)2 z

D (2)+ D (2) = goz+ 4o

Y,(z)=0

280[Czla45}1 +(€{5)2]
D2(2) = —— | y2p 905
errfcaalen +e0)+(eis)?]

1477

Apparently, the electric field strength, both in the cavity and the matrix, is not influenced
by the dislocation and the remote equivalent mechanical field p,. In addition, the electric

field strength and the electric displacement are uniform inside the cavity.

5. INTERACTION BETWEEN SCREW DISLOCATION AND ELLIPTICAL
INHOMOGENEITY

5.1. Field solutions for elastic problems

For the elliptical inhomogeneity, no closed-form field potentials exist. In the absence
of the electric fields, however, the problem becomes a purely elastic one, and the expressions
(33)—(36) for the coefficients, a7, b}, ¢? and d; can be given by the following simple forms

2 0 ~
a =1"al+7"al, ¢ =0,

b = IPad +JPad — b0, d} = 0.

It follows from eqns (21)—(23), (26) and (41) that

ciib, ¢ c c . R
Yo+ () = I (1 - 3)+ PoRE+ U+ p0) 7
0

S| b_ 0 1 _
- <m>[1;2>c()(k+l’—122’co‘“”]C’““) leQ
k=0

_ C‘IM - 1 My pr y—k+1) (¢ pF \—k+1)
w0 = - S5 {(—k +1>[lk (REQ) ™+ — J{ (Ry) )

X [(ROH D+ (RY) %+ ”]}+ U3 po+J4"bo)z (e,

where
I = 2, (1 +p) m _ “2#1(1—/11)R‘2“‘+”
) (]+ﬂ1)2"(1“‘#1)2R‘4(k+”’ * (I+u)?—(1—py)>R-4*+D
1o = 4y, R2K+D o (1— @3)[1 — R4+
K= _

()2 = (1= )2RED7 T8 () — (1= )2 R0+

(41)

(42)

(43)

If the dislocation is located at a point z, = Qy({,) along the x-axis and the remote strain
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7% or stress ¢ vanishes, such that {, = {, and p, = p,. the field solutions (42) and (43)
become

iab. 1 1—u)R? ¢R
Cas ‘ln<1—£>+CPoR§+p0( +#l)+( )ul)'jc_y
2mi Lo/ 2 (I=p)+ (1 +p)R 2

"hb:i(_l )Klﬂw
k+1)0—pu)—(14p,)R2+D

Fo(O)+¥ () =

(L)~ * D e, (44)

2ni k=0

Vb, o= 1 2y REH1 =G+
W,(0) = C14b, {( ) Hq Lo

2mi k;) k+1)(1—p) = (14 p,)R2E+D

[(RO“V + (RO~ ”]}

2#1R2Po 2
(I—p)+A+pu)R?

[eQ,. (45)

The same problem has been considered, in the absence of p,, by Sendeckyj (1970). In terms
of our notation, his result can be expressed as

¢4
2

Yo+ () =

4bz
i

{ln(C—Co)-i—Kln(l ! )
L_.Co

2 % n ]
+(1-K )n;) |:(—K) In <I~Q—CCOR2”+2):|} (46)

C4]l4bz

2ni

le(C) =

(14K io(—K)" In [z — Q(R™C,)] (47)

where K =(u,—1)/(u,+1) and Q(f) is the mapping function defined in eqn (9). In the
absence of p,, our results (44) and (45) are identical to eqns (46) and (47), except for a
constant term representing the rigid-body displacement. The equivalence between eqns (44)
and (46) or (45) and (47) can be easily established by expanding eqns (46) or (47) into a
double series form and noting that one of the series can be summed up to give closed-form
expressions.

5.2. Interaction between screw dislocation and elliptical cavity
If the inhomogeneity is an elliptical cavity, we have ¢, = 0, ¢?5 = 0, and &}, = ¢,. In
this case, the field solutions become

. Czlmb; ¢ 1
o)+ ¥, 0 = S [m (1- EJ)‘I“ (1 . Z‘(Tcﬂ“’"z

1 ) 5 ,
+E(—po+R“ﬁo+Lﬁf’R~qo+N%2>R2qo)[z—(zz—cz)”] (48a)

Dy () + D, (0) = qoz+; [(LE'R* — g + N R?G, ][z — (22 ~ )] (48b)
¥,() =0 (49a)
D, (0) = [LY g0 + N Go)z (49b)

where
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L® = —4p,a,(1 +a,5,)R?/S
N = 2,00, [(1 4+, By —pa) + (1 +0o, By + 1) R*/S
LY =2y (1o, B1)(1+a, By +ps) R[S
N$ = —2u,(1+0, )1+, By — )RS
LY =4, (1 +2,B)R?/S
N = 200 40, )0 4o, f1 + 1) R — (1 +o, fy —p2)]/8) — 1

with
d=4o0fi+w)’ R —(1+u f, — ).
It follows from eqns (7), (48) and (49) that

1
Eo—iby = — % 4 (PR —1)gy + NP R3]

11 &

o el ( L1 ) 2RE +<e}5 )
o — Dy, == - P 7 R
A = L U e T\ T

1
e
- { 15 | pyt R2y+ LR gy + NP RG]
Ca4

1
RZCZ _—1 QEQI

1
~ - (eQ
R -1

. C}Mb: < 1 + 1 1 2R4’2 +< + e:S )
0, —I0,, = —— p - — - o1
S P VO S N S VY T T I TR A

—[(LPR*—1)g, +NE)4)R2¢70]}

- {[_Po +R*po+LP R qo+ N RG]

el ) 1
+%[(La%—1)q0+Na4)R2q01}—,T eQ
£l R{ —1

in the matrix, and

; 1 (3) (3) =
Eo—IiE,=— 8_(L0 gdo+N5'qo) (e,
0

D,— iDyZ - (Lg)CIO + Ngz)q) {eQ,

i

in the cavity.

It is clear that the electric displacements exhibit 1/r (r = { —{,) singularity at the point
{ = ¢, in the matrix and are uniform in the cavity. In addition, the electric field strength,
both inside and outside the cavity, are not affected by the dislocation and the remote
equivalent mechanical field p;, and are uniform inside the cavity.

If we let the ratio of the major and minor diameters of the elliptical cavity approaches
zero such that the cavity can be taken as a slit crack, it follows from eqn (10) that ¢ = b/a —
0, R — 1, and ¢ — a. In this case, expressions (48) and (49) reduce to
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'}14bz 1
o0+, (0) = 5 [m (1 - ¢ )i (1- ag;)}%—poz

—ilm(pﬁf%qo)[z—(zz—az)'ﬂ] (50a)

&n
Qo () + D1 () = g0z (50b)
1 1 1 2
®,(0) = {fiReq0+i-g———“”c“+(e'5) Imqo}z. (51)
6:1 8},&';4

It is interesting to note from the above equations that the electric field strength, either in
the matrix or along the crack faces, is uniform and can be expressed as

1 : .
E —IE = — ——qo In the matrix
&1

It

E,—iE

v

1[e el 1k +(e15)°
- — [i Re gy + zu?f(i Img, | along the crack faces.

.1 .
o {614 €11Ca4

The stresses and electric displacements, however, show traditional square root singularities
near the ends of the slit crack. This phenomenon was also observed by Pak and Tobin
(1993) in the absence of the dislocation. The above results are very important in determining
the electric boundary conditions of a cavity or a crack problem in piezoelectric media.

6. CONCLUSIONS

The electro-elastic interaction between a screw dislocation and an elliptical piezoelectric
inhomogeneity in an infinite piezoelectric material is investigated. By using conformal
mapping and the perturbation technique, the general series solutions for the field potentials
in both the inhomogeneity and the surrounding matrix are obtained explicitly. In the case
of a circular inclusion or an elliptical cavity, closed-form field potentials are derived. It is
found that when the inhomogeneity reduces to a cavity, the electric field strength, both
inside and outside the cavity, attains a uniform distribution in the cavity and is not affected
by the presence of a dislocation in the matrix. If the elliptical cavity further reduces to a
slit crack, both the stress and the electric displacement exhibit traditional square root
singularities, while the electric field strength becomes uniform in the matrix and along the
crack faces.
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APPENDIX 1

Expressions for complex constants p, and q, corresponding to different combinations of remote electric and mechanical
loads

The complex constants p, and ¢, in eqn (19) can be determined from the following four cases of the boundary
conditions given at infinity :

.

(Case 1) remote mechanical strains yZ, 32 and remote electric field strength £7 and E7 will yield
Po = Chayi—iclayh, gy = —ehED +ie E (A1)

(Case 2) remote mechanical stresses ¢, ¢ and remote electric displacements D and D will yield

_ oLt (eislci)Dl [.(7:1“‘*‘(?}5/(’-'14)1)_7
o = N - . .
L+ (e15)? el eha) L+ (eis)*/(elicha)

_ (eis/cia)os— D} 7{.(":5/5‘]14)0';*D;1 .

0= : (A2)
1+ (efs)? /el 1 cha) T+ (e15)? /el cha)
(Case 3) remote mechanical strain 72, 7% and remote electric displacements D7 and D will yield
Po = Cha¥A —lciayh, o =(elsyh —DI)—ileisyh —DY); (A3)
(Case 4) remote mechanical stresses o2, ¢ and remote electric field strength £7 and £ will yield
po = (0% +elsED)— ok +elsEY), qo= —e,E7 +iel E. (A4)

APPENDIX 2

Details of coefficients in eqns (33)—(36)
The coefficients in eqns (33)-(36) are given as follows:

s A ; Ae Aas
J = R2Ak+D B =K, JU = RAk+n (ZLE 23 \
! (5|.k * 024 * Six Oax

vy (A2 Aan fak Aas
L = RZ(A—»I) —== — N(I) — RZ(M b Zex T4 .
* (()l.A * 62‘l\> - (51,A~ 024 (A3)
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A A A Ax
I = Rk [Z3k 4 PTRY gy prken [Z3k 27K
. (51.1. * G2 * Orx  Oox)

2k
2 Aeu | Agu B Aok Aua
LV = RA*+D [ == . N = RA+D (— — —.—~>. (A6)
. (ol.k 5z.k) ! Sk Ozs
1(2,=1+R2(k”)/._~\,_k+I—Rz(k+1))~l.k J(z):1+R2‘k+])m7J1R2(MH;'—”*Vl
: Hy [ H 0a2s” g B 01 H Oy ’
le) _ 1+R2(1<+1) @ l—Rl(k'M) )”4.1« V(Z) _ 1+R2{k——1@ B I_RZ(IﬁLll /'..“\ (A7)
* Hy ' H 024" g " 31y H dax ’
1(4]:1+R2(k+1);._;j‘+lfRZ(A”)).”‘ Jul):]+R2(A_4;L.157J<_1_R2U\‘”;‘74‘*
g M I Ha L « He Orx "> Gas’
1+ R0 2, 1=R™ D 4, I+ R¥™ M a0 1=R™ DA,
LW == S N oo (A8)
. M2 Ok Mo a4 o 5] S 4 23] Oy
Where
| R 1 .
fg = —[<‘ +1>RL‘“”+(~ - lﬂ—ti. [(“—‘ +az>R2"‘ o +(a—‘ —az)} (A9)
M2 H2 / M2 2
e =(°<|4‘11)(l‘RMH]) (A10)
1 1 A A
Ay = 7[(7 +1>R2(A'l}7(7 —l)leﬂ, [(0(1 +a2)Rz:k+lv7(ﬂ —0‘:>:| (A1)
M2 1253 Ha Ho
Agy =y —o )1+ R+ (A12)
Asi = (P2 — PO - R+ (A13)
[ /1 1 A N .
Ags = — (— + l)RZ""+"+ (— —1 )}—al [(& +[f3>R‘(”“+<& ~[33>:| (Al14)
L\ i y H H
Arg =B — )+ R4 (A15)
[/ 1 R 1 ,
O L o [T o
L\t Hi H Hy
with

1 1 1 1 A
Sy = v[(v+1>R2‘““+<—-—l) (~+1 RZ‘“')+<—A]
I H M Ha

|
~
[

62,}; — 7[(L+1>R2(k+”7<—1’—1> (..1_+] Rz"**”_(
Hy My Ha Ho

and p, po, o4, 5, 1 and §, given in eqn (17).



